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Abstract 

Higher energy levels of  the  harmonic  oscillator and the  "radial quant i f ica t ion"  formula 
for the  hydrogen  a tom are obta ined within the  f ramework  of  stochastic electrodynamics.  
In two remarks,  intricacies o f  q u a n t u m  mechanics  are highlighted. 

The simplicity of its axiomatics and the "classical" nature of stochastic 
electrodynamics (SED) have prompted the author to apply SED to various 
physical problems. Thus, some new results and numerous quantumlike 
results were obtained (Surdin, 1971a, 1971b; 1973; 1974a, 1974b). The pre- 
sent Note is part of  the program of the investigation into the possibilities of  
SED. 

Using the concept o f the universal fluctuating electromagnetic field at the 
absolute zero of temperature, the zero-point field, one may obtain its energy 
spectrum (Braffort & Tzara, 1954); in the one-dimensional case one has 

e(co) = Kco3 /3rcc 3 (1) 

where K is a constant having the dimension of action. 
With this unique quantitative information about the zero-point field it was 

possible to show (Braffort et al., 1965) that the average energy of a one- 
dirnensional harmonic oscillator is 

K w o (  1 co0 log w0t  (2) 
(E(co, T = 0)> = - ~  1 27r cos COs/ 

where coo is the resonant frequency of the oscillator and co s = 3mc 3/2e 2 ; the 
second term in the right-hand side of Eq. (2) corresponds to the Lamb shift. 
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It was also possible to show that if one considers an ensemble of  harmonic 
oscillators in thermal equilibrium with a thermostat at temperature T, then the 
average energy of an oscillator at temperature T is given by (Surdin et al., 1966) 

(E(co, T)> = - - ~  1 + eKCO/k T _ i (3) 

which is Planck's law for black-body radiation. 
It was deemed interesting to examine the possibility of obtaining the 

expression giving the higher energy levels of the harmonic oscillator when using 
the same kind of arguments. 

The proper approach to this problem appears to be the following: One con- 
siders the harmonic oscillator in the presence of the zero-point field and a 
monochromatic electromagnetic field of frequency t,. Then one computes the 
expression, as a function of v and co o, of the energy absorbed from the mono- 
chromatic electromagnetic field by the harmonic oscillator. 

In the present Note a somewhat different, not exactly equivalent, approach 
is used: One considers, as in the case of the black-body radiation, an ensemble 
of harmonic oscillators in thermal equilibrium with a thermostat at tempera- 
ture T and one derives the expression ofEn,  for higher energy levels, of the 
individual harmonic oscillator. 

I f  one could derive an alternate relation for Eq. (3), giving <E(co, T) >, a 
comparison between these two relations may yield the expression giving E n. 
Obviously, such a relation may be obtained from the Gibbs distribution, viz., 

En e-En/kT 

(E(co, T)> = n (4) 
e-en/kT 

n 

Let K~o/kT = x, then it appears that the expansion of 1/(e x -  1) in powers 
of e -x ,  equivalent to the right-hand side of Eq. (4), has a well-known unique 
solution (Tolman, 1938), 

1 e - x + 2 e  - 2 x + 3 e  - 3 x + 4 e  - 4 x + . ' .  
(5) 

e x -  1 l + e  - x + e  - 2 x + e  - 3 x + e  - 4 x + . . "  

Taking into account the first term of the right-hand side of Eq. (3) and 
rearranging, one obtains from Eqs. (3) and (5) 

(n + ½)KoJe -(n ~ )Kto/~cT 

<E(a~, T)) =n=o , n = 0, 1, 2, 3 . . . .  (6) 
e -(n+~)g°a/kT 

n=0 

Comparing Eqs. (4) and (6), we obtain 

En = (n + ½)Kco, n = 0, 1, 2, 3 . . . .  (7) 

The above result may be used to derive the expression of En for the excited 
states of the hydrogen atom. 
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In classical mechanics the orbit of a body moving in a central force field is 
planar. Consider in the plane of the orbit two orthogonal axes 0x, 0y. The 
motion of an electron in the Coulomb field potential -eZ/r ,  in the presence 
of the zero-point field, can be considered as the resultant of the motions of 
two one-dimensional harmonic oscillators, having the same resonant frequency, 
oscillating independently along the two orthogonal axes. 

Let 6o02 = eZ/mrn 3 be the resonant frequency; rn is the "average radius" of  
the orbit. It was shown (Surdin, 1973) that, owing to the fact that the reso- 
nance curve of the oscillator is very narrow, the average kinetic and the average 
potential energies of the oscillator are the same, so that 

(nl + ½)K6oo = m6oo z (x z ) 

(s) 
(n2 + ½)K6Oo = m6oo 2 (y2) 

Hence 

rn2 = (nl + n2 + 1)K/m6oo (9) 

Since the two harmonic oscillators are independent, one may write 

n 1 +n  2 = n ,  n = 0 , 1 , 2 , 3  . . . .  (10) 

hence 

rn 2 = (n + 1)K/m6o o (10) 

Replacing in Eq. (10) co 0, one obtains 

r n = ( n + l ) 2 K 2 / e 2 r n ,  n = 0 , 1 , 2 , 3  . . . .  (11) 

which is the radial quantification expression in quantum mechanics (QM).* 
The preceding suggests two interesting remarks: 

(1) In QM Eq. (3) may be obtained from statistical considerations. The 
derivation given above of Eq. (7) from Eq. (3) is valid in QM. In other words, 
Eq. (7) may be obtained in QM from ensemble considerations. However, Eq. 
(7) is also obtained in QM as a solution of the Schr6dinger equation, which 
involves a single harmonic oscillator. It appears that here one comes up against 
the well-known difficulties in the interpretation of QM. In SED the difficulty 
does not arise. Equations (3) and (7) are obtained by considering ensemble 
averages. The modified Schr6dinger equation was obtained by considering 
time averages (Surdin, 1971 a). Since the ergodic hypothesis is verified in SED, 
no contradiction may arise. 

(2) Equation (7), as derived in QM from Eq. (3), involves an ensemble of 
harmonic oscillators in thermal equilibrium with a thermostat at temperature 
T. Equation (7) is also a solution of Schr6dinger's equation, where no mention 
is made of temperature T. In SED the modified SchrSdinger equation is ob- 

* The same results were obtained by a somewhat different approach in an unpublished 
note by P. Braffort, M. Surdin, and A. Taroni in 1966. 
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tained for a harmonic oscillator in the presence of the zero-point field. The 
left-hand side of this equation [Schr6dinger's part, see Eq. (3.13) of Surdin 
(1971 a)], remains the same if the fluctuating electromagnetic field is at 
temperature T, provided the process remains Markoffian. The only term 
which is modified for T ¢ 0 is the S term, in the right-hand side of this 
equation. This remark may explain why Schr6dinger's equation is independent 
of Tin QM. 
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